Analysis of respiratory chain regulation in roots of soybean seedlings
نویسندگان
چکیده
Changes in the respiratory rate and the contribution of the cytochrome (Cyt) c oxidase and alternative oxidase (COX and AOX, respectively) were investigated in soybean (Glycine max L. cv Stevens) root seedlings using the 18O-discrimination method. In 4-d-old roots respiration proceeded almost entirely via COX, but by d 17 more than 50% of the flux occurred via AOX. During this period the capacity of COX, the theoretical yield of ATP synthesis, and the root relative growth rate all decreased substantially. In extracts from whole roots of different ages, the ubiquinone pool was maintained at 50% to 60% reduction, whereas pyruvate content fluctuated without a consistent trend. In whole-root immunoblots, AOX protein was largely in the reduced, active form at 7 and 17 d but was partially oxidized at 4 d. In isolated mitochondria, Cyt pathway and succinate dehydrogenase capacities and COX I protein abundance decreased with root age, whereas both AOX capacity and protein abundance remained unchanged. The amount of mitochondrial protein on a dry-mass basis did not vary significantly with root age. It is concluded that decreases in whole-root respiration during growth of soybean seedlings can be largely explained by decreases in maximal rates of electron transport via COX. Flux via AOX is increased so that the ubiquinone pool is maintained in a moderately reduced state.
منابع مشابه
AMELIORATION OF NICKEL TOXICITY IN SOYBEAN PLANTS BY GIBBERELLIN AND ASCORBIC ACID
The interactive effects of nickel (Ni) and ascorbic acid (AsA) and gibberellin (GA3) on soybean seedlings (Glycine max L. cv. Union × Elf) were examined. Seven-day old hydroponically-grown seedlings were exposed to NiCl2, 6H2O (0.5 mM), either with or without AsA (1 mM) or GA3 (0.05 mM) or AsA (1 mM) plus GA3 (0.05 mM), for five days. Nickel toxicity symptoms, such as formation of reddish-brown...
متن کاملSonication and Vacuum Infiltration Enhanced Agrobacterium Rhizogenes Mediated Transformation in Soybean
Objective: This study involved the formulation of protocol of Agrobacterium rhizogenes mediated transformation for the detailed study of isoflavones (IFs) metabolism in soybean. Methods: Cotyledons were separated from 4-day-old soybean seedlings and infected with three different A. rhizogenes strains under various time durations of sonication, vacuum infiltration and cocultivated on Murashige a...
متن کاملExpression of a Soybean Hydroxyproline-Rich Glycoprotein Gene Is Correlated with Maturation of Roots
A novel extensin gene has been identified in soybean (Glycine max L.) that encodes a hydroxyproline-rich glycoprotein (SbHRGP3) with two different domains. In this study expression of SbHRGP3 was investigated during soybean root development. SbHRGP was expressed in roots of mature plants, as well as seedlings, and showed a distinct pattern of expression during root development. The expression o...
متن کاملRegulation of Alternative Oxidase Activity by Pyruvate in Soybean Mitochondria.
The regulation of alternative oxidase activity by the effector pyruvate was investigated in soybean (Glycine max L.) mitochondria using developmental changes in roots and cotyledons to vary the respiratory capacity of the mitochondria. Rates of cyanide-insensitive oxygen uptake by soybean root mitochondria declined with seedling age. Immunologically detectable protein levels increased slightly ...
متن کاملGenome-Wide Small RNA Analysis of Soybean Reveals Auxin-Responsive microRNAs that are Differentially Expressed in Response to Salt Stress in Root Apex
Root growth and the architecture of the root system in Arabidopsis are largely determined by root meristematic activity. Legume roots show strong developmental plasticity in response to both abiotic and biotic stimuli, including symbiotic rhizobia. However, a global analysis of gene regulation in the root meristem of soybean plants is lacking. In this study, we performed a global analysis of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 117 3 شماره
صفحات -
تاریخ انتشار 1998